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SUMMARY 
Finite element solution methods for the incompressible Navier-Stokes equations in primitive variables form 
are presented. To provide the necessary coupling and enhance stability, a dissipation in the form of a 
pressure Laplacian is introduced into the continuity equation. The recasting of the problem in terms of 
pressure and an auxiliary velocity demonstrates how the error introduced by the pressure dissipation can be 
totally eliminated while retaining its stabilizing properties. The method can also be formally interpreted as a 
Helmholtz decomposition of the velocity vector. 

The governing equations are discretized by a Galerkin weighted residual method and, because of the 
modification to the continuity equation, equal interpolations for all the unknowns are permitted. Newton 
linearization is used and at each iteration the linear algebraic system is solved by a direct solver. 
Convergence of the algorithm is shown to be very rapid. Results are presented for two-dimensional flows in 
various geometries. 

INTRODUCTION 

The numerical solution of the incompressible Navier-Stokes equations in primitive variables 
form presents some particular problems. First, the governing equations, namely continuity and 
momentum, are in terms of velocity and pressure, with none of the equations identifiable as 
governing the pressure. Thus various techniques have been developed to overcome this problem. 
Chorin’ suggested adding the time derivative of pressure to the continuity equation, thereby 
identifying it as the pressure one. The added term links the equations and allows pressure to be 
updated from the continuity equation. The scheme is, however, unsuitable for the time-accurate 
prediction of unsteady flows. A different scheme has been suggested by Harlow and Welch.2 
Other known algorithms in this context are Patankar and Spalding’s3 SIMPLE and SIMPLER, 
in which a Poisson pressure or pressure correction equation is solved at every iteration to satisfy 
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the conservation of mass. Other alternatives exist and have been applied in the finite difference 
and finite element contexts. Taylor and hug he^,^ for example, solve the equations simultaneously 
and, to provide stability, use unequal-order elements for pressure and velocity. The consistency of 
representation of the variables by different degree polynomials in finite elements is known as the 
Babuika-Brezzi ~ondition.’,~ It has similarity to the necessity of staggered grids in finite 
difference solutions3 to avoid odd-even decoupling of the pressure field, also known as checker- 
boarding. Recently, a move has been initiated in finite volume methods away from staggered grids 
and towards the use of collocated solution methods.’ 

Another problem in the solution of the Navier-Stokes equations is the necessity at high 
Reynolds numbers to use upwinding or directly introduce dissipation in the equations in order to 
stabilize schemes. This artificial viscosity is introduced arbitrarily and must often be made large, 
masking the true physical features of the flow. 

A third problem is the slow convergence of explicit schemes. It is not unusual for an explicit 
method to be considered converged when it has reached ‘engineering accuracy’, a situation often 
indicating that a limit cycle might be reached if the iteration is continued. 

In the present work some approaches are proposed to overcome these problems. First, it is 
suggested to introduce a pressure Laplacian directly in the continuity equation, thereby interpret- 
ing it as a pressure Poisson equation. This term, with a small coefficient proportional to the grid 
size, can be viewed as an artificial viscosity. It provides the necessary coupling between the 
equations and circumvents the need for the Babuika-Brezzi condition. An added novelty of this 
work is to show that, by defining an ‘auxiliary’ velocity, the scheme can be demonstrated to be free 
of artificial viscosity, i.e. the scaling coefficient of the pressure Laplacian can be of order unity 
without affecting the results. 

The iteration for the non-linearity is carried out through a Newton linearization, followed by a 
direct solution of the discretized linear equations at each iteration. The resulting matrices are 
solved using an efficient vectorized frontal solver adapted and modified from Reference 8. For 
two-dimensional flows direct solvers are becoming very competitive. Their drawback, however, is 
the escalation of memory requirements with grid refinement and problem dimension. Advanced 
matrix technology on vector and parallel computer architectures seems the way to overcome the 
size limitation for large problems and is the thrust of ongoing work for three-dimensional flows. 

In the following the details of the formulation are presented. 

FORMULATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

The equations governing steady two-dimensional incompressible viscous flow can be written as 

a a 
-( u )  + -( u )  = 0, ax a y  

ax 

ax 
It is possible to augment the continuity equation with a Laplacian 
provide the necessary coupling and avoid pressure checkerboarding 

a a 
- (u)+-(u)=l  
ax ay 
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To eliminate the error in mass continuity associated with an artificial viscosity, the continuity 
equation is first written as 

-(u*)+-(u*)=I ax a dY a (;; -+- $) , 
with the auxiliary velocity vector u* defined as 

a P  aP u*=u+A-- ,  v*=v+I-. ax aY 

(3) 

(4) 

The continuity equation remains therefore exact in terms of the physical velocity, i.e. V * u = 0. The 
momentum equations and the boundary conditions can then be rewritten in terms of u*, the 
auxiliary velocity. This is straightforward for the convective terms but the viscous terms merit 
examination. Equation (4) is rewritten in vector form as 

u* = u + IVp = u + CI. (5 )  

vxCI=o. (6) 

Since CI is the gradient of a scalar, CI is irrotationak hence 

The viscous term of the momentum equations can hence be rewritten as 

1 
Re 

=-[v2u*-v(v~CI)+vx(vxCI)] 

1 
Re 

=-[ v2u* - V(V mu*)] 

or 
1 1 

Re Re -v2u=--v x.(V x U*). 

The viscous term can thus be expressed exactly in terms of the auxiliary velocity u*. The use of 
equation (7b) may, however, lead to some numerical problems owing to poor conditioning of the 
resulting matrix. To avoid this, equation (7a) is used with the second term neglected, introducing 
a small error, proportional to I, in the viscous term. This error is much less important than the 
error in the continuity equation of the original scheme, and decreases rapidly with the Reynolds 
number. 

It can be seen that the proposed pressure-velocity explicit coupling or PVEC approach 
introduces into the continuity equation the stabilizing properities of an artificial viscosity, 
without the associated error, at the expense of a small error in the viscous terms. It allows equal 
order of interpolation for pressure and velocity, with no restriction on the choice of  element^.^-^ 

The PVEC method can also be interpreted, from equation (5), as a Helmholtz decomposition of 
the velocity vector into divergence- and curl-free parts. The velocity u represents the divergence 
free component of u*, while the curl-free component CI is assumed proportional to the pressure. 
Thus 

(8) v x u * = v  x u-v xIVp=V xu, 

i.e. the physical velocity vector u and the auxiliary one u* have the same vorticity. la addition, the 
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physical velocity satisfies the incompressibility condition 

v.u=o. (9) 
One then has the choice of solving the problem in terms of (u, p ) ,  (u*, p )  or (u, u*). Hafez and co- 
workersg. lo develop the (u, u*) system as an alternative to the velocity-vorticity formulation 
( u , Q ) . ~ ' * ' ~  In the (u,Q) special care must be taken to ensure mass conservation since the 
continuity equation is not imposed directly but only through its gradient. The (u, u*) system of 
equations would consist of solving 

v2u=-v x (V x u*), 

We prefer the (u*,p) formulation because it allows an explicit and direct imposition of the 
continuity equation. Moreover, in three dimensions it consists of a four-equation system versus 
six for the (u, u*) system, hence is more amenable to a direct solution. 

FINITE ELEMENT DISCRETIZATION 

The finite element formulation starts by selecting element interpolation or shape functions for the 
vector of nodal unknowns U = (u*, v*, p ) :  

4 

j =  1 
U =  1 NjUj. 

In this work all variables are interpolated by bilinear shape functions 

Nj=$(l+((j)(l+uqj), j = 1 , .  . . ,  4, (12) 

expressed in terms of the normalized non-dimensional parent element co-ordinates ti and qj .  
The Galerkin weighted residual form of the equations can be written as 

where W are weight functions, identical to the interpolation or shape functions N. 

velocity u* can be written as 
After integration by parts, the weak form of the Galerkin system in terms of the auxillary 
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+$s& W[(u.n)u+pn,] dS=O, (14b) 

+fs& W ( ~ n x - ~ n y )  dS-fs W[(u-n)u+pn , , ]  dS=O. 

j j A  { ( u * - A g ) ( u * - A $ ) z +  [ ( v * - A $ ~ + p ] ~ - ~ ; ( ~ d x + d y d y  aw 1 a u * a w  au*aw 

( 144 

NEWTON LINEARIZATION 

After substituting the shape and weight functions into equations (14), Newton's method can be 
introduced by setting 

U n + A U  (15) Un+l= 

for the vector of nodal unknowns U = ( u * ,  u*, p). After neglecting second-order terms, the 
continuity and x- and y-momentum equations for incompressible flow, for example, yield 
respectively 

continuity 

[K#'] { A p } + [ K r ]  { A u * } + [ K r ]  {Au*}=- {RP} ,  ( 164 

where the element contributions to the matrices are 

and the contribution to the residual is 

x-momentum 

[Kyj'] { A p } + [ K " ]  { A u * } + [ K : J ]  {Au*}=- {RY} ,  
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where the element contributions to the matrices are 

[ k 9 ] = J I A  [%( 

[ k;;] = j jA [ z ( 2 u ;  - 2 A 2 )  N j  + 5 ( U; - %%) N j -  -( 1 2 aw.alvj ~ + ~ a w i a N j  -)] dA, 
Re ax ax ay  ay 

1 au* 
- Wi -dS; 
Re an 

y-momentum 

[ K J ]  { A p } + [ K r ]  {Au*}+[KYY] { A u * } = - { R ~ } ,  (W 
where the element contributions to the matrices are 

[ 5 1  = [ ?( v f  - A2) NjdA,  

and the contribution to the residual is 

1 av* 
- Wi-dS. 
Re an 

All integrals are evaluated numerically by a 4 x 4 Gauss-Legendre quadrature after expressing 
them in local co-ordinates (, q. Typically, 

1 

[ k i j ~ = J l ~  J - 1  kij[x(t, q), Y ( ( ,  V ) I  I J I  dtdtl, (17) 



A HELMHOLTZ VELOCITY DECOMPOSITION 141 

where J is the Jacobian of the local transformation at each of the four Gaussian points of an 
element. 

BOUNDARY CONDITIONS 

When using the PVEC method there is no longer an explicit appearance of u. Thus equation ( 5 )  
must be used for boundary conditions where u must be specified as follows. 

For the continuity equation the boundary conditions are: 

At inlet 

A t  exit 
On walls 

For the momentum equations the boundary conditions are: 

At inlet 

The contour integral of equation (14a) is calculated using the specified inlet 
velocity u. 
The pressure is specified as a Dirichlet boundary condition. 
The contour integral of equation (14a) drops out naturally because of the no- 
penetration condition at the wall. 

u*, u* inlet profiles are imposed as Dirichlet boundary conditions derived from 
equation (4), i.e. using the imposed physical inlet velocity profile and the 
pressure gradient from the previous iteration. The inlet values of u* and u* thus 
change from iteration to iteration. The values for u and u, however, remain 
constant (equal to zero). 
u: = u: = 0, i.e. the streamlines are parallel. This means that the first contour 
integral in equations (14b) and (14c) drops out and the second one is calculated 
at the exit. 
u* = Apx, u* = lpy, a Dirichlet boundary condition with the pressure obtained 
from the previous iteration. Similar to the inlet conditions, the values of u* and 
u* on walls change from iteration to iteration. The values for u and u, however, 
remain constant (equal to zero). 

At exit 

On walls 

RESULTS 

Let us define the (u, p) approach as being the solution of equations (lb), (lc) and (2) and the (u*, p) 
or PVEC approach as the solution of equations (lb), (lc) and (3). Results are presented for a 
sudden expansion geometry, at a Reynolds number of 100, using both methods to assess the effect 
of the pressure dissipation on the continuity equation. 

First, tests are camed out using the (u, p) approach to determine the effect of grid size on the 
required dissipation 1. The flow is calculated on a fine grid (42 x 19 elements), using the lowest 
value of 1 (= 0.005 for this case) that gives smooth pressure contours, and the results are shown in 
Figure l(a). The grid is then coarsened and the lowest value for 1 that suppresses wiggles is 
heuristically determined on each grid. These tests indicate that A should be proportional to A3, 
A being the mesh size. 

Tests are then again run on the finest grid (42 x 19 elements) using both the (u, p) and (u*, p) 
approaches with a rather high 1 (=0*1). The resulting pressure contours are compared in Figures 
l(b) and l(c) with those of the (u, p) method with low 1 of Figure l(a). It can be noted that, while 
both contours are smooth, the (u, p) method has weaker pressure gradients, reflecting the error in 
the continuity equation introduced by 1. Moreover, the pressure contours of the (u*, p) method at 
the highest A (=0.1), Figure l(b), compare well with those calculated by the (u, p) method at the 
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Figure l(a). Newton-Galerkin incompressible Navier-Stokes algorithm: fine grid, low artificial viscosity coefficient, 
1 = 0.005, (u, p) approach 

Figure l(b). Newton-Galerkin incompressible Navier-Stokes algorithm: fine grid, high artificial viscosity coefficient, 
1=0.1, (u*, p) or PVEC approach 

Figure l(c). Newton-Galerkin incompressible Navier-Stokes algorithm: fine grid, high artificial viscosity coefficient, 
rZ = 0.1, (u, p )  approach 
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Figure 2. Convergence history of incompressible Navier-Stokes PVEC scheme 

lowest R (=O-O05), Figure l(a). This demonstrates that the (u*, p) method results are virtually 
independent of the coefficient A, even at this relatively low Reynolds number. 

Figure 2 shows the convergence history of PVEC scheme for the sudden expansion geometry, 
demonstrating the rapid convergence of the method. Quadratic convergence is not achieved here 
because of the lagging of the boundary conditions implementation in the Newton scheme. 
However, machine accuracy is reached in a few iterations. 

The second test case demonstrated is the classical driven cavity problem at a Reynolds number 
of 400. The problem is run on a 50 x 50 grid. The centreline velocity profile is plotted in Figure 3 
and the streamlines in Figure 4. Both compare very well with the streamfunction-vorticity results 
of Reference 13 and the results of Reference 14. 
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Figure 3. Incompressible viscous flow in a cavity at JPe=400: centreline velocity 

Figure 4. Incompressible viscous flow in a cavity at Re=400. streamlines 

CONCLUSIONS 

This paper presents a stable technique for solving the incompressible Navier-Stokes equations 
without the need for artificial dissipation. The PVEC method is simple and, more importantly, is 
more in line with the general spirit of finite element techniques. The method is justified both in a 
heuristic artificial viscosity way and formally as a Helmholtz decomposition. 

The method allows equal interpolation of all variables and removes restrictions on the choice 
of elements. The implicit technique removes time step size restrictions, and the results underscore 
the rapid convergence of Newton direct solvers in the solution of the Navier-Stokes equations. 

Current work is focusing on extending the methodology to subsonic and transonic flows and 
on the use of advanced matrix technology as a tool for bringing the three-dimensional situation to 
manageable levels. 
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